Cdc42 and RhoA reveal different spatio-temporal dynamics upon local stimulation with Semaphorin-3A
نویسندگان
چکیده
Small RhoGTPases, such as Cdc42 and RhoA, are key players in integrating external cues and intracellular signaling pathways that regulate growth cone (GC) motility. Indeed, Cdc42 is involved in actin polymerization and filopodia formation, whereas RhoA induces GC collapse and neurite retraction through actomyosin contraction. In this study we employed Förster Resonance Energy Transfer (FRET) microscopy to study the spatio-temporal dynamics of Cdc42 and RhoA in GCs in response to local Semaphorin-3A (Sema3A) stimulation obtained with lipid vesicles filled with Sema3A and positioned near the selected GC using optical tweezers. We found that Cdc42 and RhoA were activated at the leading edge of NG108-15 neuroblastoma cells during spontaneous cycles of protrusion and retraction, respectively. The release of Sema3A brought to a progressive activation of RhoA within 30 s from the stimulus in the central region of the GC that collapsed and retracted. In contrast, the same stimulation evoked waves of Cdc42 activation propagating away from the stimulated region. A more localized stimulation obtained with Sema3A coated beads placed on the GC, led to Cdc42 active waves that propagated in a retrograde manner with a mean period of 70 s, and followed by GC retraction. Therefore, Sema3A activates both Cdc42 and RhoA with a complex and different spatial-temporal dynamics.
منابع مشابه
RhoA-kinase coordinates F-actin organization and myosin II activity during semaphorin-3A-induced axon retraction.
Axon guidance is mediated by the effects of attractant and repellent guidance cues on the cytoskeleton of growth cones and axons. During development, axon retraction is an important aspect of the pruning of inappropriately targeted axons in response to repellent guidance cues. I investigated the roles of RhoA-kinase and myosin II in semaphorin-3A-induced growth cone collapse and axon retraction...
متن کاملOptogenetic activation of Plexin-B1 reveals contact repulsion between osteoclasts and osteoblasts
During bone remodelling, osteoclasts induce chemotaxis of osteoblasts and yet maintain spatial segregation. We show that osteoclasts express the repulsive guidance factor Semaphorin 4D and induce contact inhibition of locomotion (CIL) in osteoblasts through its receptor Plexin-B1. To examine causality and elucidate how localized Plexin-B1 stimulation may spatiotemporally coordinate its downstre...
متن کاملLocalized RhoA activation as a requirement for the induction of membrane ruffling.
We examined the spatio-temporal activity of RhoA in migrating cells and growth factor-stimulated cells by using probes based on the principle of fluorescence resonance energy transfer. In HeLa cells migrating at a low cell density, RhoA was activated both at the contractile tail and at the leading edge. However, RhoA was activated only at the leading edge in MDCK cells migrating as a monolayer ...
متن کاملExpression of Semaphorin-3A and its receptors in endochondral ossification: potential role in skeletal development and innervation.
Bone tissue is densely innervated, and there is increasing evidence for a neural control of bone metabolism. Semaphorin-3A is a very important regulator of neuronal targeting in the peripheral nervous system as well as in angiogenesis, and knockout of the Semaphorin-3A gene induces abnormal bone and cartilage development. We analyzed the spatial and temporal expression patterns of Semaphorin-3A...
متن کاملA New Wavelet Based Spatio-temporal Method for Magnification of Subtle Motions in Video
Video magnification is a computational procedure to reveal subtle variations during video frames that are invisible to the naked eye. A new spatio-temporal method which makes use of connectivity based mapping of the wavelet sub-bands is introduced here for exaggerating of small motions during video frames. In this method, firstly the wavelet transformed frames are mapped to connectivity space a...
متن کامل